Part Number Hot Search : 
SA5901 IRF82 IN74ACT ATS04ASM I74F164D SCM5B37J EL7232 LC66512
Product Description
Full Text Search
 

To Download R1118N201B-TR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  r1118 series series series series automatic mode shift / 150ma low voltage regulator ea-175-071023 1 outline r1118 series are cmos-based voltage regulator ics with ultra low supply current (typ.5.5 a), and remarkable improved transient response compared with the conventional low supply current voltage regulator. the supply current of these ics is automatically shifts between fast mode and low power mode, it depending on the load current. (the current threshold is fixed internally). these ics are capable of the low input voltage (min.1.4v) and the output voltage range from 0.8v is possible. the output voltage of r1118 is fixed in the ic. each of these ics consists of a voltage reference unit, an error amplifier, a resister net for setting output voltage, a current limit circuits for over-current. a standby mode with ultra low supply current can be realized with the chip enable function. since the packages for these ics are sot-23-5 and dfn(plp)1612-4b (h: 0.4mm), therefore high density mounting of the ics on boards is possible. features ? supply current (low power mode)typ. 5.5a (i out =0ma) ? supply current (fast mode) typ. 50a (i out =11ma) ? supply current (standby mode) typ. 0.1a ? input voltage range 1.4v ~ 6.0v ? output voltage range 0.8v ~ 4.2v ? dropout voltagetyp. 0.27v (i out =150ma, v out =2.8v) ? output voltage accuracy 1.0% (1.5v r1118 2 block diagram r1118xxx1b r1118xxx1d selection guide the output voltage, version, and the taping type for the ics can be selected at the user?s request. the selection can be made with designating the part number as shown below; r1118xxxx x-xx part number a b c d code contents a designation of package type: n: sot-23-5 k: dfn(plp)1612-4b (h: 0.4mm) b setting output voltage (v out ) : fixed type: 08 to 42 stepwise setting with 0.1v increment in the range from 0.8v to 4.2v exception:1.85v=r1118x181x5-xx :2.85v=r1118x281x5-xx c designation of active type: b: active high type d: active high type, with auto-discharge d designation of taping type: ex.tr (refer to taping specifications: tr type is the standard direction) vref current limit + - v out gnd ce v dd v dd vref current limit + - gnd ce v out
r1118 3 pin configuration sot-23-5 dfn(plp)1612-4b 1 2 3 4 5 (mark side) top view 4 3 12 bottom view 3 4 2 1 pin descriptions r1118n : sot-23-5 pin no. symbol description 1 v dd input pin 2 gnd ground pin 3 ce chip enable pin (?h? active) 4 nc no connection 5 v out output pin r1118k : dfn(plp)1612-4b pin no. symbol description 1 v out output pin 2 gnd ground pin 3 ce chip enable pin (?h? active) 4 v dd input pin tab is gnd level.(they are connected to the reverse side of this ic) do not connect to other wires or land patterns.
r1118 4 absolute maximum ratings symbol item rating unit v in input voltage 6.5 v v ce input voltage (ce pin) ? 0.3 ~ 6.5 v v out output voltage ? 0.3 ~ v in +0.3 v i out output current 180 ma sot-23-5 420 p d power dissipation* dfn(plp)1612-4b 580 mw ta ambience temperature range ? 40 c ~ +85 c c tstg storage temperature range ? 55 c ~ +125 c c * for power dissipation, please refer refer to the package information. electrical characteristics v in = set v out + 1v, i out =1ma, unless otherwise noted. values indicate -40 c < = ta < = 85 c, unless otherwise noted. (ta=25 c) symbol item conditions min. typ. max. unit v out < = 1.5v -15mv -40mv 15mv 30mv 1.5v r1118 5 v in =set v out + 1.5v) v in input voltage 1.4 6.0 v ? v out / ? t output voltage temperature coefficient ? 40 c < = ta < = 85 c 100 ppm/ c i lim short current v out =0v 40 ma i pd ce pull-down constant current 0.01 0.30 0.6 a v ceh ce input voltage ?h? 1.0 v v cel ce input voltage ?l? 0.4 v en output noise bw10hz ~ 100khz 100 vrms r low nch on resistance for auto discharge (d version only) v ce =0v 40 ? the specifications in are guaranteed by design. all specifications are specified under load conditions such that tj ta=25 c except for items of output noise, ripple rejection and output voltage temperature coefficient. dropout voltage dropout voltage (v) v out (v) condition typ. max. 0.8 < = v out <0.9 0.82 1.06 0.9 < = v out <1.0 0.74 0.98 1.0 < = v out <1.2 0.66 0.90 1.2 < = v out <1.5 0.54 0.77 1.5 < = v out <2.0 0.45 0.64 2.0 < = v out <2.8 0.34 0.49 2.8 < = v out i out =150ma 0.27 0.37 the values in are guaranteed by design. test circuits c1 r1118x series v dd v out gnd v c2 v out i out ce standard test circuit
r1118 6 c1 r1118x series v dd v out gnd c2 a i ss v out ce test circuit for supply current r1118x series v dd v out gnd c2 pulse generator i out p. g. ce test circuit for ripple rejection c1 r1118x series v dd v out gnd c2 i outa i outb v out ce test circuit for load transient response technical notes when using these ics, consider the following points: phase compensation
r1118 7 in these ics, phase compensation is made for securing stable operation even if the load current is varied. for this purpose, use a capacitor c out with good frequency characteristics and esr (equivalent series resistance). (note: if additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. because of this, test these ics with as same external components as ones to be used on the pcb.) pcb layout make v dd and gnd lines sufficient. if their impedance is high, noise pickup or unstable operation may result. connect a capacitor with a capacitance value as much as 1.0 f or more between v dd and gnd pin, and as close as possible to the pins. set external components, especially the output capacitor, as close as possible to the ics, and make wiring as short as possible typical application (external components) output capacitor 1.0 f tdk c1005jb0j105k kyocera cm05x5r105k06ab typical characteristics 1) output voltage vs. output current (topt=25 c) r1118x081x r1118x151x v out c1 r1118x series v dd v out gnd c2 ce 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 100 200 300 400 500 output current i out (ma) output voltage v out (v) vin=1.4v vin=1.6v vin=1.8v vin=2.3v vin=2.8v vin=3.8v 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0 100 200 300 400 500 output current i out (ma) output voltage v out (v) vin=2.0v vin=2.5v vin=3.5v
r1118 8 r1118x281x r1118x421x 2) input voltage vs. output voltage (topt=25 c) r1118x081x r1118x151x r1118x281x r1118x421x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 100 200 300 400 500 output current i out (ma) output voltage v out (v) vin=3.1v vin=3.8v vin=4.8v 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0 100 200 300 400 500 output current i out (ma) output voltage v out (v) vin=4.5v vin=5.2v vin=6.0v 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0123456 input voltage vin(v) output voltage vout(v) iout=1ma iout=10ma iout=100ma iout=150ma 0.0 0.3 0.6 0.9 1.2 1.5 1.8 0123456 input voltage v in (v) output voltage v out (v) iout=1ma iout=10ma iout=100ma iout=150ma 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0123456 input voltage v in (v) output voltage v out (v) iout=1ma iout=10ma iout=100ma iout=150ma 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0123456 input voltage v in (v) output voltage v out (v) iout=1ma iout=10ma iout=100ma iout=150ma
r1118 9 3) supply current vs. input voltage (topt=25 c) r1118x081x r1118x151x r1118x281x r1118x421x 4) supply current vs. output current (topt=25 c) r1118x 0 10 20 30 40 50 60 0123456 input voltage vin(v) supply current iss( a) iout=0ma iout=-15ma 0 10 20 30 40 50 60 0123456 input voltage vin(v) supply current iss( a) iout=0ma iout=-15ma 0 10 20 30 40 50 60 0123456 input voltage vin(v) supply current iss( a) iout=0ma iout=-15ma 0 10 20 30 40 50 60 0123456 input voltage vin(v) supply current iss( a) iout=0ma iout=-15ma 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 output current iout(ma) supply current iss( a) low powermode to fast mode fast mode to low powermode
r1118 10 5) output voltage vs. temperature r1118x081x r1118x151x r1118x281x r1118x421x 6) supply current vs. temperature r1118x081x r1118x151x 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 -40 -15 10 35 60 85 temperature topt (c) output voltage vout(v) 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 -40 -15 10 35 60 85 temperature topt (c) output voltage vout(v) 2.74 2.75 2.76 2.77 2.78 2.79 2.80 2.81 2.82 2.83 -40 -15 10 35 60 85 temperature topt (c) output voltage v out (v) 4.10 4.12 4.14 4.16 4.18 4.20 4.22 4.24 4.26 -40 -15 10 35 60 85 temperature topt (c) output voltage v out (v) 0 1 2 3 4 5 6 7 8 9 10 -50 -25 0 25 50 75 100 temperature topt (c) supply current iss( a) 0 1 2 3 4 5 6 7 8 9 10 -50 -25 0 25 50 75 100 temperature topt (c) supply current iss( a)
r1118 11 r1118x281x r1118x421x 7) dropout voltage vs. output current r1118x081x r1118x091x r1118x101x r1118x121x 0 1 2 3 4 5 6 7 8 9 10 -50 -25 0 25 50 75 100 temperature topt (c) supply current iss( a) 0 1 2 3 4 5 6 7 8 9 10 -50 -25 0 25 50 75 100 temperature topt (c) supply current iss( a) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 25 50 75 100 125 150 output current i out (ma) dropout voltage v dif (v) 85 25 -40 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 25 50 75 100 125 150 output current i out (ma) dropout voltage vdif(v) 85 25 -40 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 25 50 75 100 125 150 output current i out (ma) dropout voltage v dif (v) 85 25 -40 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 25 50 75 100 125 150 output current iout(ma) dropout voltage vdif(v) 85 25 -40
r1118 12 r1118x151x r1118x201x r1118x281x r1118x421x 8) dropout voltage vs. set output voltage (topt=25 c) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 25 50 75 100 125 150 output current i out (ma) dropout voltage v dif (v) 85 25 -40 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 25 50 75 100 125 150 output current iout(ma) dropout voltage vdif(v) 85 25 -40 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 25 50 75 100 125 150 output current i out (ma) dropout voltage v dif (v) 85 25 -40 0 0.05 0.1 0.15 0.2 0.25 0.3 0 25 50 75 100 125 150 output current i out (ma) dropout voltage v dif (v) 85 25 -40 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.511.522.533.544.5 set output voltage vreg(v) dropout voltage vdif(v) 5ma 15ma 30ma 50ma 100ma 150ma
r1118 13 9) minimum operating voltage r1118x081x 10) ripple rejection vs. input voltage(topt=25 c),ripple=0.2vp-p,c in =none,c out =ceramic1.0 f, r1118x281x i out =5ma i out =15ma i out =50ma 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0 25 50 75 100 125 150 output current iout(ma) input voltage vin(v) 0 10 20 30 40 50 60 70 80 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 input voltage v in (v) ripple rejection rr(db) f=100hz f=1khz f=10khz f=100khz 0 10 20 30 40 50 60 70 80 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 input voltage v in (v) ripple rejection rr(db) f=100hz f=1khz f=10khz f=100khz 0 10 20 30 40 50 60 70 80 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 input voltage vin(v) ripple rejection rr(db) f=100hz f=1khz f=10khz f=100khz
r1118 14 11) ripple rejection vs. frequency (topt=25 c), c in =none r1118x081x v in =2.3v dc +0.2vp-p, cout=1.0uf r1118x081x v in =2.3v dc +0.2vp-p, cout=2.2uf r1118x151x v in =2.5v dc +0.2vp-p, cout=1.0uf r1118x151x v in =2.5v dc +0.2vp-p, cout=2.2uf r1118x281x v in =3.8v dc +0.2vp-p, cout=1.0uf r1118x281x v in =3.8v dc +0.2vp-p, cout=2.2uf 0 10 20 30 40 50 60 70 80 0.1 1 10 100 frequency f(khz) ripple rejection rr(db) iout=5ma iout=15ma iout=50ma 0 10 20 30 40 50 60 70 80 0.1 1 10 100 frequency f(khz) ripple rejection rr(db) iout=5ma iout=15ma iout=50ma 0 10 20 30 40 50 60 70 80 0.1 1 10 100 frequency f(khz) ripple rejection rr(db) iout=5ma iout=15ma iout=50ma 0 10 20 30 40 50 60 70 80 0.1 1 10 100 frequency f(khz) ripple rejection rr(db) iout=5ma iout=15ma iout=50ma 0 10 20 30 40 50 60 70 80 0.1 1 10 100 frequency f(khz) ripple rejection rr(db) iout=5ma iout=15ma iout=50ma 0 10 20 30 40 50 60 70 80 0.1 1 10 100 frequency f(khz) ripple rejection rr(db) iout=5ma iout=15ma iout=50ma
r1118 15 r1118x421x v in =5.2v dc +0.2vp-p, cout=1.0uf r1118x421x v in =5.2v dc +0.2vp-p, cout=2.2uf 12) input transient response (i out =30ma,tr=tf=5 s,c in =none, c out =1 f topt=25 c) r1118x081x r1118x151x r1118x281x r1118x421x 0 10 20 30 40 50 60 70 80 0.1 1 10 100 frequency f(khz) ripple rejection rr(db) iout=5ma iout=15ma iout=50ma 0 10 20 30 40 50 60 70 80 0.1 1 10 100 frequency f(khz) ripple rejection rr(db) iout=5ma iout=15ma iout=50ma 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0 102030405060708090100 time t( s) output voltage v out( v) -2 -1 0 1 2 3 4 input voltage v in (v) 1.46 1.48 1.5 1.52 1.54 1.56 1.58 0 102030405060708090100 time t( s) output voltage v out( v) -2 -1 0 1 2 3 4 input voltage v in (v) 2.76 2.78 2.8 2.82 2.84 2.86 2.88 0 102030405060708090100 time t( s) output voltage v out( v) -1 0 1 2 3 4 5 input voltage v in (v) 4.16 4.18 4.2 4.22 4.24 4.26 4.28 0 102030405060708090100 time t( s) output voltage v out( v) 1 2 3 4 5 6 7 input voltage v in (v)
r1118 16 13) load transient response (tr=tf=500ns, c in =ceramic1.0 f, topt=25 c) r1118x081x r1118x081x r1118x151x r1118x151x r1118x281x r1118x281x 0.6 0.7 0.8 0.9 1 1.1 1.2 -2 0 2 4 6 8 1012141618 time t( s) output voltage vout(v) -150 -100 -50 0 50 100 150 output current iout(ma) cout=1.0 f cout=2.2 f 0.6 0.7 0.8 0.9 1 1.1 1.2 -10 0 10 20 30 40 50 60 70 80 90 time t( s) output voltage vout(v) -120 -90 -60 -30 0 30 60 output current iout(ma) cout=1.0 f cout=2.2 f 1.3 1.4 1.5 1.6 1.7 1.8 1.9 -2 0 2 4 6 8 10 12 14 16 18 time t( s) output voltage vout(v) -150 -100 -50 0 50 100 150 output current iout(ma) cout=1.0 f cout=2.2 f 1.3 1.4 1.5 1.6 1.7 1.8 1.9 -10 0 10 20 30 40 50 60 70 80 90 time t( s) output voltage vout(v) -120 -90 -60 -30 0 30 60 output current iout(ma) cout=1.0 f cout=2.2 f 2.6 2.7 2.8 2.9 3.0 3.1 3.2 -2024681012141618 time t( s) output voltage vout(v) -150 -100 -50 0 50 100 150 output current iout(ma) cout=1.0 f cout=2.2 f 2.6 2.7 2.8 2.9 3.0 3.1 3.2 -10 0 10 20 30 40 50 60 70 80 90 time t( s) output voltage vout(v) -120 -90 -60 -30 0 30 60 output current iout(ma) cout=1.0 f cout=2.2 f
r1118 17 r1118x421x r1118x421x r1118x301x 14) turn-on speed by ce signal (c in =ceramic1.0 f, c out =ceramic1.0 f, topt=25 c) r1118x081x (v in =1.8v) r1118x151x (v in =2.5v) 4 4.1 4.2 4.3 4.4 4.5 4.6 -2024681012141618 time t( s) output voltage vout(v) -150 -100 -50 0 50 100 150 output current iout(ma) cout=1.0 f cout=2.2 f 4 4.1 4.2 4.3 4.4 4.5 4.6 -10 0 10 20 30 40 50 60 70 80 90 time t( s) output voltage vout(v) -120 -90 -60 -30 0 30 60 output current iout(ma) cout=1.0 f cout=2.2 f 2.6 2.8 3 3.2 3.4 3.6 3.8 -10 0 10 20 30 40 50 60 70 80 90 time t( s) output voltage v out (v) -400 -300 -200 -100 0 100 200 output current i out (ma) -0.4 0 0.4 0.8 1.2 1.6 2 2.4 -20 0 20 40 60 80 100 120 140 160 180 time t( s) output voltage vout(v) -4 -3 -2 -1 0 1 2 3 ce input voltage vce(v) iout=0ma iout=1ma iout=15ma iout=100ma -0.75 0 0.75 1.5 2.25 3 3.75 -20 0 20 40 60 80 100 120 140 160 180 time t( s) output voltage vout(v) -8 -6 -4 -2 0 2 4 ce input voltage vce(v) iout=0ma iout=1ma iout=15ma iout=150ma
r1118 18 r1118x281x (v in =3.8v) r1118x421x (v in =5.2v) 15) turn-off speed by ce signal (c in =ceramic1.0 f, c out =ceramic1.0 f, topt=25 c) r1118x081x (v in =1.8v) r1118x151x (v in =2.5v) r1118x281x (v in =3.8v) r1118x421x (v in =5.2v) -1.5 0 1.5 3 4.5 6 7.5 9 -20 0 20 40 60 80 100 120 140 160 180 time t( s) output voltage vout(v) -8 -6 -4 -2 0 2 4 6 ce input voltage vce(v) iout=0ma iout=1ma iout=15ma iout=150ma -2 0 2 4 6 8 10 12 -20 0 20 40 60 80 100 120 140 160 180 time t( s) output voltage vout(v) -12 -9 -6 -3 0 3 6 9 ce input voltage vce(v) iout=0ma iout=1ma iout=15ma iout=150ma -0.4 0 0.4 0.8 1.2 1.6 2 2.4 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 time t(ms) output voltage vout(v) -4 -3 -2 -1 0 1 2 3 ce input voltage vce(v) iout=0ma iout=1ma iout=15ma iout=100ma -0.75 0 0.75 1.5 2.25 3 3.75 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 time t(ms) output voltage vout(v) -8 -6 -4 -2 0 2 4 ce input voltage vce(v) iout=0ma iout=1ma iout=15ma iout=150ma -1.5 0 1.5 3 4.5 6 7.5 9 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 time t(ms) output voltage vout(v) -8 -6 -4 -2 0 2 4 6 ce input voltage vce(v) iout=0ma iout=1ma iout=15ma iout=150ma -2 0 2 4 6 8 10 12 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 time t(ms) output voltage vout(v) -12 -9 -6 -3 0 3 6 9 ce input voltage vce(v) iout=0ma iout=1ma iout=15ma iout=150ma
r1118 19 16) output capacitor esr value vs. output current (describes the operation stable area border) c in , c out :1.0 f (murata,grm155b31a105ke) r1118x081x (v in =1.4v to 6.0v) r1118x281x (v in =2.9v to 6.0v) r1118x421x (v in =4.3v to 6.0v) 0.01 0.1 1 10 100 0 25 50 75 100 125 150 output current iout (ma) esr ( ? ) topt=-40 c topt=25 c topt=85 c 0.01 0.1 1 10 100 0 25 50 75 100 125 150 output current iout (ma) esr ( ? ) topt=85 c topt=25 c topt=-40 c 0.01 0.1 1 10 100 0 25 50 75 100 125 150 output current iout (ma) esr ( ? ) topt=85 c topt=25 c topt=-40 c
package information 20 0 100 200 300 400 500 600 0 25 50 75 100 125 150 a mbience tem p erature ( c ) power dissi p ation p d ( mw ) 250 420 525 85 free ai r on boa r d power dissipation (sot-23-5) this specification is at mounted on board. power dissipation (p d ) depends on conditions of mounting on board. this specification is based on the measurement at the condition below: (power dissipation (sot-23-5) is substitution of sot-23-6.) measurement conditions standard test land pattern environment mounting on board (wind velocity=0m/s) board material glass cloth epoxy plastic (double sided) board dimensions 40mm*40mm*1.6mm copper ratio top side: approx. 50%, back side: approx. 50% through-holes 0.5mm * 44pcs measurement result (ta=25 c) standard test land pattern free air power dissipation 420mw(tjmax=125 c) 525mw(tjmax=150 c) 250mw(tjmax=125 c) thermal resistance ja = (125-25 c)/0.42w= 263 c/w 400 c/w power dissipation measurement board pattern ic mount area (unit: mm) use in the oblique-line-area may have a bad influence on the long-term quality assurance. recommendation duration time is up to 9,000 hours. 9,000 hours are corresponding to six years in case that this device is used for four hours a day.
package information 21 40 40 power dissipation (dfn (plp)1612-4b) this specification is determined under the condition of the device mounting on board. power dissipation (p d ) depends on conditions of mounting on board. this specification is based on the measurement at the conditions below: measurement conditions standard test land pattern environment mounting on board (wind velocity=0m/s) board material glass cloth epoxy plastic (double sided) board dimensions 40mm*40mm*1.6mm copper ratio top side: approx. 50%, back side: approx. 50% through-holes 0.54mm * 24pcs measurement result (ta=25 c) standard test land pattern power dissipation 580mw (tjmax=125 c) 725mw (tjmax=150 c) ja = (125-25 c) / 0.58w= 172 c/w thermal resistance jc = 51 c/w power dissipation measurent board pattern ic mount area unit: mm * use in the oblique-line-area may have a bad influence on the long-term quality assurance, recommendation operating duration time is up to 13,000 hours. 13,000 hours are corresponding to nine years in case that this device is used for four hours a day. 0 100 200 300 400 500 600 700 800 0 255075100125150 ambience temperature (c) power dissipation pd (mw) 85 580 725


▲Up To Search▲   

 
Price & Availability of R1118N201B-TR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X